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ABSTRACT

The stability of a boundary layer on a heated flat plate is investigated in the linear

regime. The flow is shown to be unstable to longitudinal vortex structures which in general

develop in a nonparallel manner in the streamwise direction. Solutions of the nonparallel

equations are obtained numerically at 0(1) values of the appropriate stability parameter,

ie the Grashof number. The particular cases investigated relate to the situations when the

instability is induced by localized or distributed wall roughness or nonuniform wall heating.

The case when the vortices are induced by freestream disturbances is also considered. The

fastest growing mode is found to be governed by a quasi-parallel theory at high wavenumbers.

The wavenumber and growth rate of the fastest growing mode are found in closed form. At

low wavenumbers the vortex instability is shown to be closely related to Tollmein-Schlichting

waves, the effect of wall heating or cooling on the latter type of instability is discussed.
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1 Introduction

Our concern is with the instability of forced convection boundary layers over hori-

zontal heated flat plates. Such flows are unstable to at least two types of hydrodynamic

instabilities; firstly we expect a convective Rayleigh-Benard type of instability because

the fluid at the plate is hotter than the fluid in the freestream. Secondly we expect a

Tollmien-Schlichting type of instability because of the similarity of the flow to isothermal

boundary layers where that type of disturbance is known to be important. In this paper

we shall be primarily be concerned with the vortex mode of instability which we inves-

tigate in a self-consistent manner using an approach suggested by related work on the

closely connected Grtler vortex problem, sce for example Hall (1990) and Denier, Hall

and Seddougui (1991). However in the small wavenumnber limit of the vortex mode we

find an unexpected relationship between the vortex mode and Tolhlien-Schlichting waves;

in effect we find that in this limit the two modes coalesce. We are thus able to describe

both propagating vortex modes and determine the effect of wall heating on the growth of

longitudinal vortex structures in boundary layers.

Interest in forced convection boundary layers is generated by the wide range of prac-

tical problem where such flows occur; in particular we refer to the heat transfer problems

associated with solar heating, electronic devices and nuclear reactors. In such situations

it is important to know the parauncter regime where instability begins because of the

associated change in heat transfer properties of the flow.

Experimental investigations of the vortex no(le of instability in a forced convection

boundary layer have been carried out b) Gilpiii, Inmra and Cheng (1978) for water, and



by 'Vang (1982) for air. Here we shall concentrate ol boundary layers in air and attempt

to explain some of the results found by Wang. In fact both authors demonstrated the

existence of the onset of a vortex mode of instability and suggested that this onset occurs
-3

at the same value of GxRx-2 when the local Grashof number, G,, and Reynolds number

R, are varied. We also note that a related instability occurs in channel flows when one

wall is heated, the reader is referred to the paper by Akiyama, Hwang, and Cheng (1971)

for an experimental investigation of that problem.

Theoretical investigations of the vortex mode of instability have been given by Wu

and Cheng (1976) and Moutsoglou, Chen and Cheng (1984). In both of these calculations,

and all other investigations we are aware of, the growth of the boundary layer is not taken

into account in a self-consistent manner. In effect it has been previously assumed that

the streamwise variation of the vortex mode is on a short lengthscale compared to that

over which the basic flow evolves. However, at finite values of the Grashof number, where

instability first sets in, the destabilizing buoyancy forces are sufficient only to provoke a

response on the same streamwise lengthscale as that over which the basic state develops. In

that case it follows that previous calculations have ignored a crucial property of the vortex

instability; thus the intrinsic nonparallel nature of the disturbance has been neglected.

A similar parallel flow assumption was made for many years by researchers concerned

with the G6rtler mechanism in curved boundary layers. More recently Hall (1983) showed

that the nonparallel nature of the vortex mode at finite values of the G6rtler number

must be accounted for by numerical investigations of the disturbance equations. At high

G6rter numl)ers analytical progress can be imade because the growth rates become large



and nonparallel effects may be neglected at zeroth order; see Hall(1982a,1982b), Denier

Hall and Seddougui (1991).

In this paper we shall concentrate on the vortex mode at finite values of the appropriate

stability parameter, ie the Grashof number. A question of fundamental importance in

this, and in fact any other parameter regime, is that of what is the physical process which

triggers disturbances in the flow and causes themn to amplify. This, the so-called receptivity

problem, has been addressed for tihe G6rtler problem by Hall (1990), and Denier. Hall and

Seddougni (1991). In particular the receptivity problems for wall roughness and freestream

disturbances were investigated in those papers. The corresponding receptivity problems

will be investigated here for heated boundary layers.

Thus, following a formulation of the instability equations in Section 2, we shall in

Section 3 investigate the stability probleii at finite Grashof numbers using a numerical

scheme outlined in Section 3. In Section 4 we concentrate on the amplification of vortex

disturbances induced by localized wall rouglmiess or nonuniform wall heating. In Section

5 we will investigate the generation of vortex disturbances by freestream inhomogeneities,

whilst in Section 6 some results for distriluted forcing are given.

In Section 7 we concentrate on the high Grashof inumber limit, this regime is relevant

to disturbances which have passed through the order one Grashof number regime without

sufficient amplification to be controlled ),v nonlinear effects. At order one wavenumbers

we show that the now unique growth rate is deterinued by an inviscid eigenvalue problem.

However the growth rate predicted by tle inviscid theory increases monotonically with the

wavenuiber so that the fastest growing l()(e ca1not be described By a pIrely inviscid

:3



theory. In fact at sufficiently high wavncrmmbers viscous effects come back into play and

the fastest growing mode is deternined by a viscous eigenvalue problem. At small vortex

wavenurnbers viscous effects again dominat'e and we show that the vortex mode ultimately

takes on a triple-deck like structure. This structure is shown to describe both vortex and

Tollnien-Schlichting modes. Finally in Section S we compare our results with previous

experimental and theoretical work and draw some conclusions.

2 Formulation of the Instability Equations

We consider the flow of a viscous fluid over a heated semi-infinite flat plate. Suppose

that U, is a typical freestream velocity, L is a typical lengthscale in the streamwise

direction and v is the kinematic viscosity. The Reynolds number is defined by Re =U. L

and throughtout we assume that Re >> 1. The wall is defined with respect to dimensional

Cartesian coordinates x*, y*, z* by

Y* = LARc-f (xI*/L,Rcz*/L)

where A is a small dimensionless constant. \Xe take the temperature of the fluid a long

way from the plate to be zero whilst at the plate the temperature is given by

T* = T0 (1 + Ag(r*/L, Rcz*/L)) .

Here To is a constant reference temperature and g represents the effect of a slight nonuni-

form heating of the plate.

We define (x, U, z) by

(x,y ) = (r*/L, R */LRc,-*/L)

41



and a dimensionless velocity vector by writing

(u+, V, ) = .*, Re 't, Re (2.1a)

We take the corresponding pressure function to be

2 p*

p+ = P(x) + ARC-j)(x, y, Z) + o(A 2 ) [ (2.1b)

where p is the fluid density and p* is the dimensional fluid pressure. We now write

(u+, U, w) (77,TO) + A(i, &,)+ O(A 2 ), (2.1c)

and the temperature field then expands as

= T+= Re-AT(x, U) + ,\Re-29(x,y,z) + O(A 2 ) (2.1d)TO+

In the forced problem for the order A field the basic velocity and temperature fields 7U, Vi, T

will be known functions of x and y. The perturbed velocity and temperature fields u, v, uw, 9

depend on all three dimensionless coordiiates. The steady Navier Stokes equations for the

problem involving buoyancy forces are

uU*. + V* i. + w*,*. -- + v(lt. +. + I% + u.-, (2.2a)

u*v;. + v'v;. + w*gv. = + g/JT* + z(v.,,. + vy. *,. + vZ. .), (2.2b),

* *w 1 +Z+*Sw*. + ,(w,. 1. + it,. '. + w...), (2.2c)

where j is the acceleration due to gravity and 3 is the coefficient of expansion. The energy

equation takes the forii

?i*T,. + ,*T*. + t *T. = -(T*.,.. + T. T. ), (2.2d)YCJ)



where K is the thermal conductivity and Cp is the constant specific heat. It is to be noted

that, since we are considering a low speed subsonic flow, the term representing the net rate

at which shearing forces perform work on the fluid is negligible.

We now write (2.2a-d) in dimensionless form and consider the limiting form of these

equations when A is small and the Reynolds minumber is large.

At leading order order we obtain

it, + &Y = 0, (2.3a)

i-luU + 4.,y = 1)+ i: , (2.3b)

it T, + CT, = - -- ' (2.3c)

for the basic velocity and temperature fields where a is the Prandtl number. At next order

we obtain

+ z + tii + ': = 0, (2.4a)

ii ,' + fial + Vh,, + viu, = uiy + 'Zi, (2.4b)

ii'+ i, + U /i, + ?',, = --- ji + by + f7.i + G9, (2.4c)

idW1 + v., = -p3z + tbyy + Wlzz, (2.4d)

t+t'oy±UTi+VT', -1(Oyj + O..:), (2.4c)

(7

where G is the Grashof number defined by

-3

G = L gTod?' V 2

G



The basic flow is taken to be the Blasius velocity profile
1 -'t=f'(71)1 v = 72;(71f- )

where f" + ff" =0 with f(0) f'(0) =0,

.f'(oc) =1.

Here the similarity variable rl is defined by

y

The basic pressure 5 is then zero and the basic temperature profile is then a function of

just 71. The boundary conditions on the order A field are obtained by setting up Taylor

series expansions about y = 0; we obtain

u-a Ef, i= v=0, = g -fTy, Y=O0j
)(2.5a)

| it, f7, ,, i --, O,0-0o ,

=v=0, T=1, Y=0
(2.5b)

1, T -+0, y] cx --+ o

We assume that f,g are such that we can write fzit -FI(x)7(z), g - fTy =

F2 (x)Q(z) in (2.5) which enables us to Fourier transform the disturbance equations in the

z variable. Thus if we Fourier transform the equations (2.4),(2.5) with a as the transform

variable, and denote the transform of (I, u. etc by q, u etc. we obtain

Ur ± I,!, + 1aw? = 0. (2.6a)

u +tvit. -- + t - ty , + atit -= .jy - a 2 u, (2.6b)

+v1 ± i'vj ± vv,1 + u'. = -Py + vY, - (12 v - GO, (2.6c)

imU + I'Il',j = -P, + W. YY + IL'z , (2.6d)

uT o + '1 + eT,,, + 1', =( - (I2), (2.6c)
(7



u =qF, v=O, w'==O. O= QF2 , y=O, it, t7, w, 0-4Oasy---+ o. (2.6f)

Ve now eliminate the pressure p and the spanwise velocity component w from the

above equations to give

(fl'yy + a +4 + a 2 VJ )v -+ ivv I + (tI.! + ca )u + (iRyy - f + a )fi

" 2(itY + it, j- )u ± "YY - VCjy- (tv + 2a02 cqy

" (itxy + a2 )vy - a2G = 0. (2.7)

Hence, given the basic velocity and tenll)erature profiles, then by solving the system of

equations (2.6b), (2.6e), (2.7) subject to the loundary conditions (2.6f) we can determine

the solution of the forced convection problemii by numerical integration for -finite values of

the Grashof number. In the following section we shall describe a numerical scheme which

we have used to integrate the disturbance equations found above.

3 The numerical scheme and some preliminary results

The disturbance equations (2.6b), (2.6e), (2.7) are parabolic in x and hence, having

imposed an initial disturbance on the flow, we can march the equations downstream from

the position where the forcing begins and monitor the vortex growth or decay. The par-

tial differential equations describing the perturbed velocity and temperature fields were

integrated using a spectral collocation method with Cliebychev polynomials used to ap-

proximate the normal dependence of the disturbance. The Chebychev polynomials are

defined on a[-1, 1] -y

T.(a) = cos(k1cos - ' o) for k = 0, 1,2...

S



and we approximate the streamwise velocity component u, for example, using an nth degree

Chebychev polynomial

u( a) = Tk(a), , = 2 = =l ,2,...

k=O ')k

and k are the unknown Chebychev coefficients of the expansion. The change of variable

(x, y) to (x, i) where -- is inade in the disturbance equations which are then solved
2x

on r [O, ] The n + 1 collocation points were chosen to be

ai= cosk ) , < < n+
71

where ri- (i+ 1),

VWe denote the value of 71 at q1 = 71i, j = 1 + j by ui w 1)

is the position at which the initial disturbance is imposed, j is an integer value and c

is the steplength in the x direction. A similar notation was employed for the other flow

quantities. We suppose these quantities are known at the jth step and illustrate how they

are advanced to x = x.l = x + (j + 1)e. Consider the x-momentum equation (2.6b):

02 aj+1 j iC9 ( 0 ,j 2xjid .
+ - 3++-xu i  a2 2.r1 u-+aOrq2 ZZ -} -- -11 ) i - a]i-,/

J~ / -2 -j 2 J 1-

= U 11- f -x '  (3.1)

where ux has been replaced by it, finite difference approximation

IL.+ - it

We approximate uj+I b y

1 + 1 ilk / k],

k=o



and

Sj+ I Z Tk ( =c 1.2....
-7 ) tk

WVe are able to generate the succesSive Chebychev polynomials using the relationship

Tk+l(z) = 2zTk(-) - Tk-l(z) for k > 0.

In a similar manner we can determine a relationship for the derivatives of the Chebvchev

polynomials. We rewrite (3.1) in the fornm

- ,~~)Tk'(0) + ( - 2.j)Tk.(i)

k 2

-+ 1 __ T, ( /) r, , - -?1 (3.2)

( ar _7jh (r ) }i 4E

for 1 <k<n-1 with i 1, 7- + I for each value of k.

WVe use the streamwise velocity boundary conditions (2.6f) to replace the k 0, k n

values in (3.2). The righthand side of (3.2) is known and by inverting the square full matrix

on the left hand side using a Gauss-Jordan elimination method, the values of the Chebychev

coefficients (3k for 0 < k < n can be determied. Il a. similar manner we can update (2.7)

and (2.6e). The method is totally implicit so tliat we expect to have a numerically stable

scheme for a streamwise steplength comlamral)e witl. the vertical steplength. The spanwise

velocity component iul cal then l)e calc, ated from the continuity equation. The paraneter

11 was varied and ?/; = 10 was folund to provi(le sufficiently accurate results. The number

of collocation points n in the I/ direcctiou was ch osen to be 1:20 and the Prandtl number

07 was chosen to be 0.72. the value for air. Tlw calcilations were carried out on an A.IT

10



DAP510 and the code was written so as to take advantage of the architecture of that

machine.

In order to validate our scheme we carried out soie calculations for the case when the

initial form of thc disturbance is imposed and not provided by a receptivity calculation.

In that case the boundary conditions at the plate and far from the wall are

it V at, = 0 Y 0,(3.3a)OU
1 , = = 0 0,u=0, (3.3b)

Ovu=v-O -=' y=-oo, (3.3b)

We also require

It UB(Y) V = u(B) 0 = OB() x= , (3.4)

where the initial conditions (3.4) describe some given vortex perturbation imposed on the

flow at x = Y. This initial disturbance must be consistent with (3.3). Further constraints

on the initial perturbation (3.4) are required in order to avoid singularities in the velocity

and temperature fields at x = T, y = 0. If we expanid u, v, 0 as Taylor series about x = Y

and y = 0 we find that the required conditions are:

u,/D(0) = 0 , to(0) = a z(0), (3.5a)

,3 (0) = 2a tj(0), .(3.5b)

0' 3(0) = , 01"(0) = a2 0 (0). (3.5c)

The l)erturbation iml)osecd on the flow was taken to be either

= B = 71(C- 11 17? = 0 .= 0 , x = (3.6)

11



or

1113 = 0 1, [, = 0 , 013 = ,i 6C = X (3.7)

where q7 2 Note that both (3.6) and (3 7) satisfy the conditions (3.3), (3.5). The

numerical scheme described in this secticn was used to solve the linear disturbance equa-

tions (2.6b), (2.Gc), (2.7), subject to th' boundary conditions (3.3) witi initial conditions

given by either (3.6) or (3.7).

For the calculations reported here we took c = 0.1. Of course the accuracy of our

calculations was checked by varying e and the vertical grid spacing in some cases. The

vortex growth downstream is deterlinnd by monitoring

E, = 101 [ dy

and the local growth rate al (x) - .The neutral point was taken to the downstream

location where this growth rate vanishes, the local Grashof and wavenumber corresponding

to this point are then obtained from

1/'2 3/

ax = ar G , = Gx

Different neutral curves were generated for fixed G = 0.025 by varying the location 7

of the initial disturbance. Figures (3.la-d) demonstrate the dovnstream velocity and

temperature fields for an initial disturbance given by (3.4) with G = 0.025 and a = 0.069.

The corresponding neutral curves are given in Figure (3.2). For an initial disturbance of

the form (3.7), the development of the velocity and tenperature fields is shown in Figures

(3.3a-d) with the corres)ondilg leutral curves shown in Figure (3.4). The perturbed

velocity )rofiles for the initil hdistuliran'e given by (3.4) is shown in Figures (3.1a-c)

12



take the same form as those found by Hall (19S3). The essential shape of the perturbed

vclocity and temperature components do not alter radically with increasing x. Initially the

spanwise velocity component w, is proportionil to Du/a"x from continuity, since the normal

velocity component v of the initial disturbance is zero. Hence both the streamwise velocity

component u and w initially decay downstream of Y before growing at larger values of x.

The velocity and temperati're profiles for a perturbation described by (3.7) are of a similar

form but take the opposite sign. It is clear from Figures (3.2), (3.4) that the concept of

a unique neutral curve is untenable and that the growth or decay of the resulting vortex

structure is dependent upon its initial form and location. However far downstream the

flow is disturbed the growth rate al(.) is initially negative. On the right hand branch of

the neutral curve G, - a,", but for a fixed wavenumber disturbance, Gx - ax3 as the flow

develops -a4 --+ 0 and the flow is locally stable, Thus any disturbance of fixed wavelength

will ultimately be stable sufficiently far downstream of the leading edge.

4 The localized forcing problem

We now consider the case when the wall forcing is described by isolated forcing func-

tions and therefore allow F1 (x),F 2(x) to vary on a relatively fi - 0(f) lengthscale, we

write

X (4.1)

where e is small and we assume that the forcinlg starts at x = T. By employing a faster

streamwise lengthscale for the isolated l heating function problem we will provide unique

initial conditions for the disturbance equations. We take F, 2 (x) F. 2(X) and choose 1,2

1 without loss of generality. This fixes the original lengthscal L in terms of the distance

2

13



between the leading edge and the starting point of the forcing. In the following discussion

we have also taken q = Q = 1, the more general case can be recovered by inserting these

factors in our final results. In order to find the forced flow in a neighbourhood of 7 we note

that u i ,, Uyy for small y if y - O(e 1/3 ) and hence the convection and diffusion effects

are of the same order of magnitude in a layer of depth dl/3 . For small y the basic velocity

and temperature fields can be approximated by

(I-,T,T) = (,A!J, /ttY2, 1 + Otl) + -.

where A ,0), p =--(0) 0 = T,(I,0) and the wall forcing implies that u, 0 are

0(1) in the region y O(E/'). \We define - and assume that 0 0(1). The

appropriate expansions near the wall are then found to be

(u, v, w,p, 0) = (t(X, .) + 6 /t(X, + (X, + .

5/3'o(A,{) ± ... ,Oo(X,) + .0.(.) . (4.2)

The expansions (4.2) are substituted into (2.7) and comparing leading order terms yields

- A }D 2 - 0. (4.3)

If we now take the Laplace transform of (4.3) with s as the Laplace transform variable we

can show that
dEvo = AAti(A'//3 1l3 ),

2- A Ai(A',/3s/ 3 )d + B, (4.4)

14



where 0 (s, ) is the Laplace transformn of t,,,(X, ), Ai is the Airy function and A and B

are constants. Transforming the continuity equation and evaluating it at the wall yields

B

whcre F, (s) is the Laplace transform- of F,+ ( X) Furthermnore we require that V,, vanishes

at infinity, so that

A =-3A/313

and

V= -SF(S){c 3j 10 (( f / At(y) dy) }4.5

The transformed temperature perturbation and streamawise velocity component are ob-

tained fromn (2.6b,e) which give

d l
2

-1 AKs) it, = t? oA, (4.6)

/1 d2  

7

d 2  As o= bol(4.7

where 0. is the transformed zeroth order temperature field. For large the asymptotic

forms of ii, i30 and 90 are given by

±4 ...-A- -3Fs 1 1 3 A- U/tE/y ±Y.. (4.8a)

VO 3FPs 2 A-1/ 3 w +.. (4.8b)

0, -Fs-13-/Otf/Y + .. (4.8c)

15



where w = -Ai'(O). Hence the flow within tho wall layer region induces the motion of the

fluid in the y = 0(1) region where i, v', 0 are expanded as

11 U= e /a+,... (4.9a)

V = Vo E- 2 /3 + ... (4.9b)

0 = 0o0
1 / 3 +..., (4.9c)

and the Laplace transforms of U0, V and 0, are found to be given by
z

Uo = -3 S1 '//3 wm(y, a) + ... (4.10a)

V0 = 3 S 3 A- 3 w (y, a) +... (4.10b)

F2 T 1A-43 ya+..00 = -3 s-/ 3 , 4 /3 wm(y,a) + ... (4.10c)

where m is a solution of the stationary Rayleigh equation problem.

I( d - a2 )m- T17"m = 0, (4.11a)

7n(0) =1 , m(OO) = 0. (4.11b).

The functions in (4.10) decay to zcro exponentially as y -+ co and satisfy the matching

conditions (4.8). We can invert the Laplace transforms and use the large X form of the

velocity and temperature fields as the initial conditions for the solution of the perturbation

equations (2.Gb), (2.6e), (2.7) subject to (2.Gf). For the isolated wall functions F' 2 (X) =

6(X) inversion of (4.5) and the corresponding forirs for i and 0o yields the similarity

solution

u, 'LA ( X'Vo X -- ( )1 ( 3  (4.12)

16



where UA, V1, 0 A are known functions of "X1/'

We now demonstrate how the similarity solution can be obtained directly from the

disturbance equations. The similarity variable is chosen to be Y 1/3 where i -

x - -. For { 0(1) we expand the perturbel velocity and temperature components as

A' /3 it1(0)- 11  o( )+ +±+ ... , (4.13a)

1 1 1

- -A5/3 V'(0) + 231() + Av 2 () + ... (4.13b)

0 A1/3  0 (e)
A' 0100) + ... , (4.13c)

and impose the wall conditions

Uo = -Vo = 0o  0, = O0. (4.13d)

The above expansions are substituted into (2.7) and at leading order yield

V" +3 v' + o 0 (4.14)

where a prime denotes differentiation with respect to (. Equation (4.14) can be soived

for v' in terms of Whittaker functions and it can be shown that there exists a solution

of (4.14) for which vo = z7. = 0, 0, and such that at infinity r, - 1+ exponentially

small terms. It is to be noted that the solutions of (4.14) which, for large , behave like

& and &-5 terms do not appear in the rcquired solution for t,,. Indeed if these terms did

occur the wall layer solutions could not 1)e miatchcd in the y = 0(1) region of the flow.

Equations (2.61), (2.6e) yield at leading order

1/ 2 Vo

,,o + + & 1 - (4.15a)

17



0" + t &00 o (4.15b)
or0 3 0A

The homogeneous forms of (4.15a,b) have the eigensolutions

uo=C exp(--- - ) 0o=C 2&exp(9 ,) . (4.16)

where C1 , C2 are arbitrary constants. It follows that, since the inhomogeneous solutions

of (4.15) must satisfy u. = 0, 0, = 0 at & = 0, the algebraically decaying solutions of the

homogeneous forms of (4.15a,b) are required. However if these solutions are retained we

cannot match with the coreflow so v0 must be zero. Hence the highest order term in the

expansion of v is v, and (2.7) then gives

-l it, U+v { U + u" (4.17)

v' + + v 1 ~o + 3 3 a 3+ o'

_ A '

which has the solution vi - o satisfying the boundary conditons. The functions

uo, vj, 00 are shown in Figure (4.1). At leading order in the expansions of u, v and 0 it

is clear that the disturbed flow is confined to the wall layer region, however at next order

the flow is no longer contained in the wall layer. The function ul satisfies the equation

a 2 uo

Ui + -- +± -a 1 3 = (4.18a)

and hence

71 3Ca {eX _) f, (0) (4.18b)
l - A1/3 epil0

where j is the exponentially decaying solution of

U+ - ±' + = 0,

1s



and 01 is similarly giN.en by

_,a{ p(_ ) . ~ }. (4.19)

Here 0I is the exponentially decaying solution of

ic2 , ^

1 01

I6~ +3 3

At higher order v2 is found to satisfy

- 2A 2
3A'2I / 3  A23 (') ! ± ,-- 1 (4.20)di+ -a + 3 ' V aa/3 (i I + 3 u, + V it") + A2/ 3,, ++

Equation (4.20) is solved subject to the boundary conditions v2  t , = 0 and

= constant + exponentially small terms as o - c. Integration of (4.20) numerically

shows that this constant is nonzero. hence the perturbed velocity and temperature fields

for the y = 0(1) region are of the formi

Cl .'-F C2xT
u , ,7(y,a) , z, -- ' m(y,a) 0 - r = (y,a), (4.21)

where m satisfies (4.11). Hence it follows that (u, v, 0) -+ 0 as y --+ oc. The function m(y,a)

is shown in Figure (4.2) for different vortex wavenumnbers. By combining (4.13,4.20) a

composite disturbance field is obtained for soime small value of i which can be used as

the initial condition for the solution of the full linear disturbance equations (2.6b), (2.6e),

(2.7), subject to the boundary conditions (2.7f).

The calculations we now report on were carried out, u.ing the numerical scheme de-

scribed earlier with the starting point of the calculation at x = 0.505 and with the stepsize
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in the x direction e equal to 0.004. In order to determine the effects of the wall forc-

ing functions, imposed at the position : = I, on the flow downstream of that point the

dimensionless energy E(.') of the flow was monitored where

E = 1 {,,2(x, Y) + x2(X, Y) + u2 (X, y)} dy

and the local growth rate &(x) = / . The position of neutral stability is defined as the
E

position at which a = 0. Of course other instability criteria can be defined but some limited

experimentation showed that the neutral curve is not greatly dependent on the choice of

flow property used to monitor the growth of the disturbance. Moreover, we believe that

the flow property we have used is a sensible one because it accounts for the changes in all

of the velocity components in some sense averaged across the flowfield. For a given wall

forcing function, G and different values of a we marched downstream and calculated the

position at which the vortex structure began to grow. The local wavenumber ar and the

local Grashof number G, were calculated and a neutral curve in (ar, G,) space formed.

This process was repeated for differenl values of G. Two sets of initial conditions were

considered. Firstly the problem was solved for an initial disturbance of the form

u =exp(-), v it-'u,2 = 0 imposed at x= 7 + .005. (4.22)

This type of disturbance correspondes to the situation when the vortices are stimulated by

wall roughness, later we shall look at the case when the vortices are induced by non-uniform

wall heating.

The development of the velocity and temperature fields downstream is shown in Fig-

ures (4.3a-c) for G = 5, a = 0.4. The corres)onding neutral curves for the problem are
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shown in Figure (4.4). We see that as G varies the neutral curves move around in the

wavenumnber-Grashof number plane. Our calculations show that there is a neutral curve

corresponding to G near 2 which has the low(,st ninim. Furthermore the minimum value

of the Grashof number on that curve is about 4. Vhen the Grashof number is increased

or decreased from this value the curves love upwards so the the flow is more stable. It

should be noted that the effect of changing G in tlie calculation of the neutral curves shown

in Figure (4.4) is exactly equivalent to calculations carried out with a fixed G but with

the position where the forcing begins now being varied. Thus in Figure (4.4) increasing G

corresponds to moving the forcing further downstrealm from the leading edge. In that case

it is not surprising that the curves in the a0 - G plane move upwards since the forcing

cannot initially generate an unstable vortex since the form of the initial disturbance is not

typical of a growing vortex flow. Likewise when G is decreased in Figure (4.4) the forcing

is being moved progressively towards the leading edge, the fact that the curves move up-

wards in this case again implies that rouglinwss near the edge has a relatively weak effect

on the flow. In an experiment one would expect that localized roughness elements would

be distributed at several sites along the wall so that the most dangerous mode would be

the one excited. We postpone a discussion of the available experimental results until the

final section of this paper.

In fact the discussion given above applies equally well to the case when the forcing

corresponds to a localized temperature variation at the plate. In particular for the problem
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with

u = 0 , or -0 exp -- }, imposed at x = 7 + .003.

(4.23)

WVe now find that the most dangerous disturbance occurs when G is close to 8 whilst

the local Grashof number corresponding to this most dangerous mode is about 2. The

downstream development of the velocity and temperature fields is shown in Figures (4.5a-

c). The corresponding neutral curves are shown in Figure (4.6). Again for large values of G

we can see that the forcing applied does not initially generate unstable vortex structures. It

is also clear that the forcing becomes less dangerous when it is moved close to the leading

edge. In each of the above calculations it was found that the dimensionless energy E

decreases by several orders of magnitude before the growth rate a becomes positive. This

means that the forcing applied generates vortices which decay significantly before they

begin to grow. Hence a localized wall forcing function is not a particularly efficient means

for the production of longitudinal vortices. However note that,despite being an inefficient

generator of longitudinal vortex rolls, in the absence of other forcing modes an isolated

wall heating forcing will result in vortex growth downstream. We conclude this section by

noting that if instability is caused by isolated wall roughness or nonuniform wall heating

then we expect instability will occur when the local Grashof number exceeds about 2.

§5 Free-stream Disturbances

We shall now consider the generation of vortex structures due to a freestream lon-

gitudinal vortex field impinging on the leading edge rather than imposing some initial
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disturbance on the flow. INI- take the streainwise velocity compIonent to be of the form

II 1 + Ac' (,; y) , x 0, (5.1)

and hience we have assumedl a delpendleice of the impini4ng v*ortex structure on the bound-

ary layer lengthscale. However it wxill later be shown that the case of u, independent

of y gives rise to the most dangerous V r)ltex mnode. We consider u, to be of the form

uc(U) = cos(by + 0) where b and ( are coiimtaiits so that the disturbance is periodic in both

the y and z directions. We necd to consider two regions, the boundary layer y - x2 and

also an outer region y -0(l), this is because the wavelengths in the spanwise and normal

directions are large compared with the boundary layer scaleX 2

Consider the boundary layer region y- .12 with x << 1 and allow y/vYr o, c, the

disturbance equations (2.6, 2.7) miay, be written in the form

o2(2 - 9i 0. (5.2a){ 2  
9

- - x -Y 0 0,(5.2b)

{ 2 - a 2 
- 3( - )} { (I 21t =L 02 GO + 13 y ita+,3t 32c

where

3 - ini(,;f - f),(5.3)

is the Blasius constant.
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WNe require a solution of (5.2a-c) which will mdintain the periodicity 7 in the y
b

direction, hence we take

=Ip = cos(bg + o -bv '2x). (5.4a)
-2

0= = Oc , cos(b! O - b, Ov2r), (3.4b)

V { [3(b2 - 2 ) + ] r - (I GO, J Z' 1 }17 = -, =+ , ,

cos(by + o- b 32xr) for 7 # 1, (5.4c)

V = l, (a2GOlx + - a2 ) + k,,
( 

2  , / 2-

cos(by + - h3 "2.r) for a = 1, (5.4d)

where 01 k1 and k 2 are arbitrary constants.

There is an eigensolution of (5.2c) t7 = Q(x)&'- 1 for arbitrary Q(x) and this solution

is needed in order to match with the boundary layer solution. Hence the appropriate

solution of (5.2c) is

= t, + Q(,r) - (  (5.5)

and it is to be noted that the boundary layer structure causes the periodic form of v to

occur only when ay >> 1. For the region where x = 0(1) and ay >> 1 at the edge of the

boundary layer, we iiiust solve the disturbance equations subject to

( i . 1, .0 ) = ( 1 1 , / ) - '/ . 0 1 , ) .  ( 5 .6 )

We now consider the I/ = 0(1) region wi th x << 1 an(d we (heteriille Q(.r) 1by matching

with the 1)01,mndary layer solu tion. The fiun'ti01s ,,, 1, a1d 0 are obtained froim expansions
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in powers of x 2 in the disturbance equations by perturbing the basic flow in the form

u cos f' + 71/2f"} +.., (5.7a)

9 cos{h' + ,q/2h +.. (5.7b)
Cos 0 1 .- , P 2/fCO- 1( - f)+ ij/2f"}+ '"- (5.7c)

where h(qi) satisfies h' =-fh, (5.7d)

and as q --4 oc

cos 3Cos 04. 
(5.8)

Matching with the boundary layer solution for 71 >> 1 yields

Q+co - v2 -) (b2- a
2), + 2( r -a1 )C

'3 Cos
v2 v/:57 (5.9

A composite solution is formed, from the y x 2 and y 0(1) solutions, for small x to

give the asymptotic forms for u, v and 9, and hence initial data, for the solution of the

disturbance equations using the numerical scheme starting at a small value of x.

We note that when € = 0. the function i, takes the form u = cos(by) which means

that the incoming vortex field does not satisfy the 110-slip condition at the wall. Hence we

choose 0 to be zero since this relates to the most physically relevant case corresponding to

u(() $ 0. We again monitored the dimensionless niergy E(ix) of the flow where

E =j { x, !j) + y,(,a', y) + ,,(., y) }dI.

and the local growth rate E . The position of neutral stability s defined I 1s

the position at which a = 0.
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For the receptivity problem formulated above the disturbance equations were marched

downstream using the numerical schene described in Section 3. The steplength in the

streamwise direction was taken to be 0.00001, this very small x steplength was necessary

due to the singular behaviour of v for small .r.

The profiles for the disturbance velocity and temperature components as the vortex

develops downstream are shown in Figures (5.1a-c). We can see that the edge velocity for

the streamwise velocity component decreases monotonically with x as does the temperature

component. The normal velocity component L at the edge of the boundary layer is seen

to increase as we move downstream,however for larger values of x the edge velocity begins

to decrease with x due to the exponential factor in (5.4c). In Figures (5.2)-(5.3) the local

Grashof number and the local wavenumber have been calculated at the points of neutral

stability where the local growth rate vanishes;this enables us to generate neutral curves in

the local wavenumber - Grashof number space. For these two cases the parameters chosen

were G=70,0 1=1. We conclude from these calculations that instability first occurs when

b=0, in fact further calculations for different values of b produced neutral curves located

above that for b = 0. We deduce that u - cosaz is the most dangerous form for the

incoming vortex field. We conclude from Figure (5.2) that freestreamn disturbances are

able to cause the onset of instaility when the local Grashof number is bigger than about

.02; this is significantly lower than the critical Grashof minumber associated with isolated

wall forcing.

j6 Distributed Roughness
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We shall now consi., , .ALe effects of wall heating on the forced convection flow when

the wall forcing is described by a non-localized forcing function and occurs on an 0(1)

streamwise lcngthscale. Again we concentrate on the 0(1) wavenumber regime. The lin-

earized disturbance equations (2.6b), (2.6c), (2.7) were solved together with the boundary

conditions (2.6f) where FI(x) is given by

11
Fl(x) = 40 x- 2) C x > 9, (6.1)

and F 2 = 0 so that the vortex is induced by wall ioughness rather than non-uniform wall

heating. Given a function q(a) the disturbance equations can be marched downstream

from x = 0 for various values of a using the numerical scheme described in section 3 with

no initial disturbance. We then invert this transformed flowfield in (a, x, y) space to give

the flowfield in (z, x, y) space induced by a forcing function of height proportional to 4(z)

the inverse Fourier transform of q(a). A symmetric obstacle q(z) was considered with

()=- (6.2)4 1

and q(a) the Fourier transform of (6.2) is given by

= ex(-4a2) .  (6.3)

We then combine (6.1) and (6.3) to give the boundary conditions (2.6f) in (a, x, y) space.

The disturbance equations were marched downstrcam and 9*(a, x, y), the iaxinmm value

of 0, was calculated. This procedure was repeateld for various values of a and the transform

in z was then inverted numierically to give 0(z, .v, .I). The parameters chosen were x varying
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between 0 and 10 whilst z varies between 0 and 10. The calculation was repeated for

different values of the Grashof number G.

The velocity and temperature profiles for the svrnmetric obstacle are shown in Figures

(6.1a-c) for G = 8, a = 0.45. It is to be noted that the maximum value of 0 occurs initially

at the wall and as x increases its position moves away from the wall.

For a distributed wall forcing function there is a strong coupling between the induced

vortex field and the wall forcing with the ratio between the two being a function of the

wavenumber and the G6rtler number. In principle we could maximise the coupling between

the vortex field and the forcing by varying a and G though this would require a large

amount of computer time.

The contours of 9*(z, x,y) arc shown in Figure (6.2). They demonstrate that

inUiiediately after the obstacle the perturbed tcmperature field decays and is formed into

a wake solution behind the obstacle. However, further downstream the effects of thermal

instability due to the heated wall reamplifies this disturbance into longitudinal vortex rolls.

The distance between the reamplification of the disturbance and the obstacle decreases

as we increase the Grashof number. The same effect could have been demonstrated by

following the same method as in section 5 by fixing the Grashof number and varying the

position at which the forcing was first applied.

The !-uie calulations were repeated for an asymmetric obstacle of the form

q(:) = -3: exp - .(6.4)

The results are shown in Figure (6.3) . A similar flow structure to that of the symmetric

obstacle was observed with the perturbed flowfield formed into a wake before subsequently
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being rearnplified further downstream into Ioi-ititudinal vortex roll structures. Again

the distance of the resulting vortex structure fromn the leading edge is dependent upon

the Grashof numiber.Tt is worth noting that similar flow structures have been reproduced

experimentally b~y Mangalami et al.( 19S7) for the analog-ous G6rtler type vortex problem.

§7 The high Grashof number limit and the fastest growing mode.

At high values of the Grashof niumber we expect that viscous effects wvill be negligible

except at low or high vortex wavenumlbers. An examiination of (2.6) for G >> 1 with a

held fixed suggests that inviscid disturb~ances have &, G2 we are therefore led to the

expansions

[u, G-2v, G - I. G 1 ), 0] = (o o op,9)+ .e ~~d, (7.1)

where U0, v0 , etc. are functions of 3- andc I/ only wvhilst 3~ expands as

S= x3o + )iG 1 2 .±. ... (7.2)

If the above expansions are substituted Into (2.6) and the donmnant terms are retained in

the limit G -- o we obtain

L0'110 +±')! 01 ± iawlo = 0,

/3 UUIU1 + ?'0 1 y =0

13() Zu t l =-10y + 0 (7.3a - c)

j1( It0 j + CO'0T 0,
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and we can eliminate tio, wo,po and 0u from this system to give

2 a 2

-tVVYY - 0 col = IY o 0 . (7.4)

This equation must be solved subject to v0 z 0 at y = 0, oo and this specifies an eigenvalue

problem /o = 3)(a).

Thus in the inviscid limit the growth of the disturbance is governed by a quasi-parallel

stability problem since in that case the disturbance varies on a relatively short, G- ,

lengthscale in the x direction. Ve shall restrict our attention here to the determination of

/o; higher order terms in the expansion of the growth rate can be obtained in a routine

manner. Ve note that we have assumed that there are unstable solutions of (7.4), this is

assured if there are regions where T. < 0 in 0 < y < o. The numerical solution of the

eigenvalue problem specified by (7.4) together with the conditions vo = 0, y = 0, c0 is made

nontrivial because of the singularity in the equation at y = 0. An examination of (7.4)

for y << 1 shows that for y << 1,v, y1 . In fact (7.4) is more easily solved by making

1
the transformation q log y and the results presented below were obtained using0)

that transformation.

In Figure (7.1) we show the most unstable eigenvalue for a = 1, it can be seen that

the growth rate increases monotonically with a. The eigenvalue shown is in fact just one

of an infinite sequence of unstable modes. For small value a we see that the growth rate

goes to zero like soife powers of a; actually our calculations suggest that 3o - al for

a << 1 and this asymptotic limit will be considered later in this section. In Figure (7.2)

we have shown vo(y) for three diffcrent values of a; we note that the disturbance becomes

less concentrated as a decreases. Now we investigate further the inviscid problem at large

30



wavenumbers. This will elimble us to idenitifv the scale onl which viscous effects come into

play andl therefore wve will lbe InI a position to idlentify the fastest growing Mode.

For large valueIS Of (I the effect Of nlormal diffusion of hecat and vorticity can only be

com-parable with that In the ,paliwisw (lirection if the vertical depth of vortex activity is

compresscd to 0(i-'I). We sliall therefore seek a solution of (7.4) -within a layer of depth

a- at the bounidary: wve thierefore (lefinle

(-UY, (7.5)

and note that it, T expand as

t=/101+ T =1 - tcai+ .(7.6a, b)

ini order that tlie dominant terms onl the left hand side of (7.4) are comparable with the

term on the righlt hand side we must write

j= ('1)00 + (7.7)

The zeroth order approximnation to the eigenvalue 1)1olleml for o then reduces to

'3020 ---20,0C (7.8)f Vo__ - VU 1I ?' =eo 0, -00.

The solution of the above equation can be expressed in ternis of miodifledl Bessel functions

of im-aginary ordler. However we were unable to find the required asymptotic p~roperties of

such functions SO we 11u1t~ solve it nulmilerically. Sine. out piayaimi at. this stage is to

see how viscous effect~s comelo Into play it Is nlot necoessary for us to solve ( 7.S); in fact we
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can, if necessary, infer the value of 3 )0) froin the limiting small wavenumber approximation

to the viscous calculations to be discussed next.

The large a inviscid analysis given above must, of course, breakdown when t,),- 0-y2

in which case viscous effects cannot be ignored. This balance is achieved where a - G4 so

we now write

(I = G 4i,

and modify (7.1) to give

I 1 3 4 f

[u, G- v, G- 2,, G- 4p, ] = [(o, I0 o, ,. 1 ,o) + G ..-]f Gdd (7.9)

where fio, fo, etc. are functions only of x and defined by (7.5). The eigenvalue f now

expands as

,7 -l
= G- +... (7.10)

and the zeroth order growth rate is found to be determined by the eigenvalue problem

0V10 + 6o0 + iU'(, = 0,

a t0  -
a2

1 )'CI 12 CO

-2N 
(7.11a -f)

(I

CO-- (I

0o __= - = 0. ( =- ..*z.

there t he opera1tor £ is de'fine(d l)v
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A more convenient form of the disturbance equations can be obtained by eliminating f0

and ib0 to give

,o -a0 =b C(O - 1)"0 -o CO ---

&2 & 2 &2  (7.12a - d)

o= o =[0 = O, := 0, zz

A point which should be noticed here is that the x momentum equation decouples from the

other equations so that the eigenrelation is determined by the sixth order system associated

with %30, 0. It is also possible to scale IL, o, and w out of the above eigenvalue problem by

redefining & and /3. In Figure (7.3) we show the most unstable eigenvalues of (7.12): the

results shown were obtained using a fourth order finite difference scheme to discretize the

differential equations for io and 00.

For small values of 6. we see that "" - so that we obtain the required match with the

large wavenumber limiting form of the inviscid mode. The growth rate attains a maximum

at a finite value of & and then passes through zero at a sufficiently large value of &. In fact

this zero of the growth rate corresponds to the right hand branch of the neutral curve in

the Grashof number - wavenumber plane. Actually it is only possible to find solutions of

(7.12) with /o $ 0; the case 0 0 corresponds to the case when

9 O W
-O = - -O - --

so that a w = w which means that the zeroth order approximation to the right hand branch

of the neutral curve is given by

C'.'G =- +. (7.13)
(7W
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An investigation of (7.12) with 1o << 1 shows that the wall layer becomes thicker in

this limit and higher order terms in (7.13) can be found when it has become O(G*); the

structure in that case is similar to that found by Hall (1982a) for the Taylor problem.

In Figure (7.4) the eigenfunctions ,()I 0 are shown for three different values of the

wavenumber. We note that at the largest value of the wavenumber the eigenfunctions have

spread further away from the wall whilst at the smallest wavenumber the temperature

disturbance develops a wall layer structure consistent with the inviscid limit discussed

above. Thus we have shown abovc that at high Grashof numbers the fastest growing

disturbance is localized at the wall and is dominated by viscous effects. The unstable band

of wavenumbers cuts out at the right hand branch of the neutral curve where a - (o%,G) .

For a -, 0(1) the disturbances are essentially inviscid with a growth rate which leads to zero

where a --+ 0. At some stage viscous effects will reappear for sufficiently small a and then

we expect that the left hand branch of the neutral curve will be encountered. Though the

growth rates in this regime are relatively small it is important for disturbances localised

very close to the leading edge of the wall. In addition there is an unexpected connection

between vortex disturbances and Tollmien-Schlichting waves here so it is now considered

in some detail. As a first step we consider the limniting form of (7.3) where a + 0. It is

clear from (7.4) that we must consider separately the regions y = 0(1) and y = 0(a-1).
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For y = 0(1) we write
it = to + ( I  +

1 3

V = a2i1 0 ±a2Vl +- ...

I 3

W = a 2wo + a-U)w +., (7.14a - e)

0 = Ogo + a0l +...,

p=po+apl +

and o then expands as

)o = 3'a" + 1a +. (7.15)

If we now substitute the above expansions into (7.3) and solve the leading order approxi-

mation to this system -vc ind that

'U.0 o -!y1

(7.16a - d)

P0 -T+ 1.

Meanwhile in the upper, 0(a - 1 ), layer we can easily show that

p = -ay + ...

a- (7.17a, b)
a - -ay +
00

Thus we can only match the expansions for v in the two layers if

(3)21

so that for small a the eigenrelation associated with (7.3) takes the form

flo = a2 + (7.18)
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The small a inviscid solution discussed above fails when 0) _ 02 in the viscous layer of

depth a-1 adjacent to y = 0. This occurs when a - G-' and we then have a triple-deck

like structure with three layers of depth 0(G-- ), 0(1),0(G- ) to consider. (Note that the

structure described below applies also to the G{rtler problem and was alluded to by Denier,

Hall, and Seddougui (1991).) NNVe therefore write a = G-7a

In order to allow for the possibility of unstable Tollien-Sclilichting waves we must

modify (2.6) to allow for the possibility of time-dependent modes. This is simply done by

inserting the term ut into the monentum equations and the term 0t into the temperature

equation. In the lower deck where ! = 0(G- ) we define = G and write

{,G- G-7 u'. G',} {(o o wp, 90) + ~~iJit

where , = ,oG? + - Q = QG2 ±- whilst u0 , z 0 ,etc. are functions of ,x. We assume

that the frequency Q of the disturbance is constant. The equations to determine the zeroth

order approximation to the disturbance in the lower deck are found to be

)OU0 + VOC + 161WO = 0,

-iffio + J()o/11ii + Vo/ = ILo'.

0 = po, (7.19a - c)

-i(Oo + +/io!9U ± L'u .. = 1-O .

which must be solved subject, to

I/o = V, = "'o = 0 ,0, =0. (7.20)
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and appropriate matching conditions at = c. Thus in the lower deck we have that

J) PO,

1
3o0 o t i+ 1 '( 1 2 Aj(')d0 ,A .'( ¢o )J0o

where Po is a constant, 1 5 - Q 0),\ f3 p and A1 is the Airy

function. In the main and upper decks the disturbance takes on essentially the same form

as that discussed above for the small a limit of the inviscid problem. Ili particular we find

that in the main deck

p = CG a

it = -CuIty

where C is a constant.

Thus iatching between the main and lower decks is achieved if

~32 _______-_~p /
C - 1] PO, '30pC 2 P Ajd

which leads to the eigenrelation

[-i + a z  .4 idi- A 5 A'(7.1[=~2] ~i A,(¢0o). (7.21)

WVe note that if we take the further limit a -+ c we recover the limiting inviscid solution

(7.18) whilst in the limit --+ 0 we obtain

-)h J AiM = (7.22)

and this eigenrelation can be found from the limiting large wavemnber analysis of Hall

and Smith (19S4). In fact, rather than solve (7.21) for ,o as a fmnction of a, it is more
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instructive to rewvrite this equation using the inverse of the spanwise wavenumber rather

than G as the appropriate large p~aramieter1. Ini order to (10 this we write

G = oa ,3*a- Q = - -

in which case (7.21) becomes

-1 {-Go + )*2} = )*3A4 (7.23)

where

- ( 7 dj'-4(i*3 (7.24)

If we set Go 0 in (7.23) the resulting eqjuation (letermnines the scaled growth rate of a 3D

Tolniien-Schlichiting wave of frequency Q*. Bly varying Go in the rang-e -oc < Go < oc

we can then infer the effect of heating or cooling on very oblique Tollmnien-Schlichiting

waves. Alternatively by setting W* = 0 we can obtain the required1 match with the inviscid

low wavenumber iodles discussed earlier. In fact we can see directly fromn (7.24) that. if

G* >> 1 with Q* held fixed, then the zeroth ordler approximation to the cigenrelation is

simply

(G +± Go > 0. (7.25)

This corresponds to the limiting inviscid formn (7.18) and we also deduce that instability

occurs only for jpositiv(: 'rashof numbers. Now we shall present results for the solution of

(7.23) for a range of values of G. It is well-knlown that neutral solutions of (7.23) occur

Ahn '0 N -with N 1.001. Thus, the neutral values of 3*are given by N 3~

where

,1*2+ Gn .3 (7.2)
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The solutions of this equation are shown in Figure (7.5). The frequency QN associated

with each of the neutral points is given by

Thus neutral solutions exist only for nonzero frequencies although we note that for Go <

0, 1GuI >> 1 equation (7.23) yields

l* iGla I + + ...- - '

The leading order term here reproduces the leading order neutral inviscid result appropriate

to negative Grashof numbers whilst the second viscous term always has negative real part

so that the flow is stable in that case. The latter results holds for all frequencies.

In Figure (7.6) we show the dependence of (* on the frequency f2* for a range of

values of the scaled Grashof number Go. We see that the mode with Go = 0 is unstable

for W'* > 2.298,3 * > 1. Between Q* = 0,2.298 the mode is stable but we note that the

growth rate approaches zero when Q* -- 0. If G0 is now taken to be slightly positive

then this limiting neutral point moves to a small positive value of Q* and there is then a

small but finite band of unstable disturbances of small frequency. When Go is increased

beyond about .06 this unstable band connects with the other unstable band corresponding

to the modes with Q* > 2.298 for G = 0. At this stage there are no neutral solutions

and as Go is increased the growth rates at small frequencies increase and approach the

limiting case * = IGo1 for Go >> 1. However, at any fixed value of Go, we see that the

growth rate asymptotes to its Tollmien-Schlichting wave value at sufficiently large values
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of Q*. 'We conclude that wall heating has a progressively increasing destabilizing effect on

Tollnien-Schli'hting waves.

If the wall is instead cooled, so that the Grashof number is negative, then the stable

band of modes in the interval 0 < Q* < 2.298 for Go = 0 increases with the neutral value

of given by Gol when Go -- -oc. However we again note that for any given value

of Go the growth rate approaches the Tollinien-Schlichting value at large values of Q*.

8 Conclusion

We shall firstly consider the conclusions to be drawn about the generation of vortex

structures by surface imperfections when the spanwise lengthscale is comparable to, but

shorter than, the body lengthscale. We have demonstrated how the vortices develop in

a nonparallel manner and shown that a unique growth rate does not exist for a growing

vortex structure. We have also shown the neutral curve associated with a particular flow

property depends on the upstream history of the disturbance.

In Section 4 we have discussed the localized forcing problem when the forcing operates

on a short stremwise lengthscale. It was shown for a forcing function of the type considered

in Section 4 that the forcing has the effect of producing a similarity solution of the linear

disturbance equations in the region where the forcing is applied. The similarity solution

can then be used to form a composite disturbance field associated with an isolated forcing

function, if the Grashof number is then varied we can determine the effect of the location

of isolated forcing on the onset of instability. Our results show that there is an optimum

position for the forcing which will produce instability at. the lowest value of the local

Grashof number, this lowest value is about 2.
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In Section 5 we have considered the freestream receptivity problem. We have demon-

strated the growth of vortex structures downstream and have shown that the receptivity

calculation with b = 0 leads to the most dangerous mode. In this case u, - cosaz at the

leading edge of the wall. The explanation of this may be that if the disturbance develops

in some type of quasi-parallel fashion then for higher values of b the incoming distur-

bances stimulate the higher modes and which are more stable. It is of interest to note

that freestream disturbances provoke instability at a much lower Grashof number than do

roughness induced motions. It would appear then that, in an experiment where care has

been taken to reduce the size of (listurbances from all sources, it will be the freestream

ones which cause the growth of streamwise vortices.

For the case where the forcing varies on the body lengthscale as discussed in Section 6

we have demonstrated how the initial disturbance decays and is formed into a wake before

its subsequent reamplification within a wedge shape region further downstream. We have

noted that this type of flow structure has been observed experimentally for the related

G6rtler type vortex problem of flow over a concave wall. In fact the results of Gilpin,

Inura and Cheng(1978) are also consistent with this picture.

The results found in Section 7 show an unexpected coupling between Tollien-Schlichingl

waves and streaniwise vortices at low spanwise wavenumbers; in fact in that regime the

two types of disturbances are virtually indistinguishable. Though disturbances with much

higher growth rates are possible at high Grashof numbers, these low wavenumber distur-

bances might be particularly relevant when the forcing mechanism which generates the

vortices operates on a long spanwise scale. Moreover it could well be that, even though
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larger linear growth rates are possible downstream where the local wavenumber has be-

come O(G. ), the disturbances might be sufficiently amplified near the left hand branch

of the neutral curve for nonlinear effects to come into play. In that case the fact that larger

linear growth rates were available downstream would be irrelevant.

We now make some further comparisons with previous theoretical and experimental

results. In order to make such comparisons it is convenient to define the parameters:

Gr, = gTo0 ' R7 x 2

-3

The local Grashof number in our notation,Gx, is then given by G1 = Gr, Re,-. Thus

if the instability is caused by wall forcing we expect that instability will occur whenever
-3

GrzRe., >Z - 2. Wu an Cheng (1976) made a parallel flow stability analysis of the
-3

problem investigated here and found that for air instability occurred for Gr Rex -' >2 ,

292. Later results given by Moutsoglou, Chen and Cheng (1981) contradicted those of Wu

and Cheng and Figure 1 of their paper suggest instability at zero Grashof number. This

result is not unlike some of the physically unrealistic results given by parallel flow theories

of G6rtler vortex growth. In order to remove this difficulty Moutsoglou, Chen and Cheng

retained higher order buoyancy effects even though they are formally negligible. The latter

approach is equivlent to the attempts made to alleviate the corresponding G6rtler problem

by retaining higher order curvature effects. Our results show that if nonparallel effects are

accounted for in a self-consistent matter then instability occurs at a finite Grashof number

and the difficulty is not present.

Wang (1982) investigated experimentally the onset of the vortex instability, his results

suggest that instability occurs for Gr1 Re.- >-, 55.. This is not consistent with our
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prediction which has the 5 power replaced by 1." We presume that the experimental result

is not consistent with ours because of the uncertainty associated with identifying the onset

of vortex activity.
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Figure (3.l1a-d) The downstream development of u, v, w, 0 for the initial disturbance given

by (3.4) with G = .025, a = .069.
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Figure (3.2) The neutral curves for different values of x for the initial conditions (3.4).
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Fig(3.3b)
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Fig(3.3d)
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Figure (3.3a-d) The downstream development of u, v, , for the initial disturbance given

by (3.7) with G= .02 5 ,5a .069.
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Figure (3.4) The neutral curves for different values of i for the initial conditions (3.7).
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Figure (4. 1) The functions iq, vi, O defined by (4.15-4.17).
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Figure (4.2) The function m(y) for a =.2, .3, .4, .5, .6, .7.

51



Fig(4.3c)
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Figure (4.3a.-c) The dlownstreamn development~ of the fuinctions it, V', IV' associated with

(4.22), the curves shown correspond to x=.505,.905,8.
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Fig(4.5a)
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Figure (4.5a-c) The downstream development of the functions u, v, w associated with

(4.23), the curves shown correspond to x=.505,.905,8.
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Fig(4.5c)
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Figure (4.5a-c) The downstream development of the functions uvw associated with

(4.23), the curves shown correspond to x=.505,.905,8.
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Figure (4.6) The neutral curves corresponding to the downstream development shown in

Figure (4.5).
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Figttre (5. 1) The downstream development of u, v, 0 for the freestream receptivity problem.
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Figure (5.2) The neutral curve for the freestream receptivity problemi with b 0.
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Fig(5.3)
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Figure (7.1) The most unstable inviscid eigenvalue associated with (7.4).
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Fig. (7.2)

1.0

0.8 a 2= .01

0.6

0.4

0.2

a V2-.

0.0 a \12-x.2

0 5 10 15 20 25 V2z

Figure (7.2) The eigenfunctions associated with (7.4) for different values of the wavenum-

ber.
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Fig. (7.3)
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Figure (7.3) The fastest growing viscous mode growth rate as a function of wavenumber.
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Fig. (7.4a)
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Figure (7.4a-b) The eigenfunctions of (7.12) for different values of the wavenumber. Note

that in Figure (7.4b) the eigenfunction associated with the smallest wavenumber has been

magnified by a factor of 1000. 65



Fig. (7.4b)
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Figure (7.4a-b) The eigenfunctions of (7.12) for different values of the wavenumber. Note

that in Figure (7.4b) the eigenfunction associated with the smallest wavenumber has been

magnified by a factor of 1000.
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Figure (7.5) The neutral eigenvalues given by (7.26).
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Figure (7.6a-b) The real and imaginary parts of 3*as functions of *.
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Fig. (7.6b)
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Figure (7.6a-b) The real and imaginary parts of f as functions of 0'.
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